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In this research, a new numerical approach which is capable of modifying the shape of three 
dimensional massive bodies like tall buildings with respect to aerodynamic loads is presented; therefore, 
the aerodynamic forces are improved; consequently, the comfortability of the buildings is increased. 
This method is divided into 2 parts, a numerical simulation of fluid flow and Adjoint method. As a 
result, some modifications are performed in the different parts of the building. In the primary step, the 
building shape and its setting position are investigated in different flow conditions as effective 
parameters on the aerodynamics of buildings. Subsequently, the sensitivity level of each variable is 
studied on aerodynamic loads. The results illustrate that the building pattern has the highest 
impressments (76%) on the excited forces. In the next step, the amount of sensitivity of the fluid flow 
on the various areas of the tower is assessed by solving Adjoint equation in the whole fluid domain. As 
a result, some aerodynamic modifications are performed and it has been proved that the imposed loads 
on the tower have declined around 31% whereas this amount of improvement is interesting for the 
design of tall buildings. 
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1   
Table 1 Flow characteristics and turbulence intensity in the 
different flow conditions 
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Fig. 1 Domain, mesh and model 
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Table 2 Comparison of drag coefficient according to different 
mesh cells around the square building in BL1 
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Table  3 Comparison of the present drag coefficient with 
published results [6] around the square building in different 
conditions 

      

 (%)  ] 6[    (%)  ] 6[    
0  1.4 1.19 1.173 1.5 1.04 1.024 

15  7.6 0.98 1.054 4.8 0.9 0.943 
30  8.3 0.99 0.908 11.7 0.92 0.812 
45  9.8 1.02 1.120 11.1 0.94 1.044 

  

  
Fig. 2 Comparison of the present drag coefficients with the 
experimental ones [6] according to various AOA around the 
square building in BL2 
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Table 4 Study on the effects of various turbulence models and 
the error 

     
34.7  1.401  -3 
22.6  1.245 - 4  
49.3  1.553  - 

5 
37  1.425  -  6  

57.2  1.635  -  
4  0.998  -  

16.8 0.866  7  
1.7  1.057     
1.5  1.024     

  
 1.04 [6] 

1- subgrid-scale 
2- Detached-Eddy Simulation (DES) 
3- Spalart–Allmaras 
4-  Standard 
5-  Re-Normalization Group (RNG)  
6- Realizable 
7- Reynolds Stress Method (RSM) 

5  
 

Table 5 Comparison of the drag coefficient of different 
buildings in several flow conditions 
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Fig. 3 Comparison of the pressure coefficient distributions on 
the front and back surfaces of the several buildings at AOA = 0, 
BL2 
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Fig. 4 Stream line distribution around the triangular building 
in the two different positions(a) direct, (b) reverse at AOA = 
0, BL3 
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Fig.  5 Comparison of the drag coefficient of several 
buildings in different angles of attack at BL1 
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Fig. 6 The lift sensitivity of tall buildings based on the several 
parameters; building shape, position of buildings, angle of 
attack and atmospheric conditions 
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Fig.  7 The drag sensitivity of the tall buildings based on the 
various parameters; building shape, position of buildings, angle 
of attack and atmospheric conditions 
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Fig. 8 Sensitivity vector around the square building at AOA = 
0, BL1 
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Fig. 9 Aerodynamic modification of a designed square section 
based on Adjoint Method 
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Table 6 Drag, lift and bending moment coefficients loaded on 
the square and oblong buildings at BL1, AOA = 0 

     
  -0.0004  1.024  

  -0.0033 0.783 
  0.0068 0.7044 

   -0.0065 0.745 
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Fig. 10 Comparison of the stream lines around the buildings(a) 
square, (b) roundness oblong at AOA = 0, BL1 
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Fig. 11 Sensitivity vector around the aerodynamic modified 
buildings at AOA = 0 and BL1, (a) chamfer, (b) roundness, (c) 
single recession  
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